首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1004篇
  免费   69篇
  国内免费   153篇
  2023年   19篇
  2022年   19篇
  2021年   15篇
  2020年   19篇
  2019年   38篇
  2018年   30篇
  2017年   79篇
  2016年   83篇
  2015年   50篇
  2014年   50篇
  2013年   68篇
  2012年   30篇
  2011年   36篇
  2010年   28篇
  2009年   76篇
  2008年   73篇
  2007年   60篇
  2006年   68篇
  2005年   53篇
  2004年   47篇
  2003年   36篇
  2002年   27篇
  2001年   20篇
  2000年   25篇
  1999年   19篇
  1998年   13篇
  1997年   13篇
  1996年   13篇
  1995年   9篇
  1994年   9篇
  1992年   5篇
  1991年   9篇
  1990年   4篇
  1989年   3篇
  1988年   1篇
  1987年   3篇
  1986年   1篇
  1985年   5篇
  1984年   5篇
  1983年   10篇
  1982年   5篇
  1981年   4篇
  1980年   9篇
  1979年   6篇
  1978年   5篇
  1977年   10篇
  1976年   6篇
  1975年   3篇
  1974年   5篇
  1973年   1篇
排序方式: 共有1226条查询结果,搜索用时 15 毫秒
51.
52.
生态系统生产总值核算:概念、核算方法与案例研究   总被引:26,自引:0,他引:26  
生态系统产品与服务功能是人类生存与发展的基础。生态系统生产总值(GEP)可以定义为生态系统为人类福祉和经济社会可持续发展提供的产品与服务价值的总和,包括生产系统产品价值、生态调节服务价值和生态文化服务价值。生态系统生产总值核算的基本任务有3个,即核算生态系统产品与服务的功能量、确定生态系统产品与服务的价格、核算生态系统产品与服务的价值量。生态系统生产总值核算可以用于揭示生态系统为经济社会发展和人类福祉的贡献,分析区域之间的生态关联,评估生态保护成效和效益。以贵州省为例,探讨了生态系统生产总值核算的应用方法,评价了贵州省生态系统为贵州和其他地区人们福祉和支撑经济社会发展所提供的产品和服务及其经济价值总和。评价结果显示,贵州省2010年全省生态系统生产总价值为20013.46亿元,人均GEP 57526元,是当年该省国民生产总值和人均GDP的4.3倍。研究表明,生态系统生产总值的核算可以反映生态系统对经济社会发展的支撑作用,并为建立生态系统保护效益与成效的考核机制提供基础。  相似文献   
53.
Fungi play a key role in decomposition of submerged wood in streams, breaking down lignocelluloses and releasing nutrients, and are important in ecosystem functioning. These wood decay fungi are known as freshwater lignicolous fungi and are usually studied by collecting submerged woody litter, followed by incubation in a moist chamber. This review explains what are freshwater lignicolous fungi, their decay mechanisms, roles and physiological attributes. Asian/Australasian lignicolous freshwater fungi have been relatively well-surveyed and enable an account of their distribution along a latitudinal transect. Unlike freshwater leaf-dwelling fungi their diversity in water bodies is greater towards the Equator which suggests they are important for decaying submerged wood in the tropics. Riparian vegetation, disturbances such as pollution, streams drying and study methods, may all affect the diversity of freshwater lignicolous fungi, however, the overall trend is a higher diversity in the tropics and subtropics. Climate changes together with increasing deposition of woody debris from human activities, and alteration of environmental factors (such as water pollution, and dam building) will impact freshwater lignicolous fungi. Changing diversity, structure and activities of freshwater fungal communities can be expected, which will significantly impact on aquatic ecosystems, particularly on nutrient and carbon cycles. There is a great opportunity to monitor changes in freshwater fungi communities along latitudinal (north to south) and habitat gradients (from human disturbed to natural habitats), and study ecological thresholds and consequences of such changes, particularly its feedback on nutrient and carbon cycles in freshwater systems.  相似文献   
54.
The trait‐based approach shows that plant functional diversity strongly affects ecosystem properties. However, few empirical studies show the relationship between soil fungal diversity and plant functional diversity in natural ecosystems. We investigated soil fungal diversity along a restoration gradient of sandy grassland (mobile dune, semifixed dune, fixed dune, and grassland) in Horqin Sand Land, northern China, using the denaturing gradient gel electrophoresis of 18S rRNA and gene sequencing. We also examined associations of soil fungal diversity with plant functional diversity reflected by the dominant species' traits in community (community‐weighted mean, CWM) and the dispersion of functional trait values (FDis). We further used the structure equation model (SEM) to evaluate how plant richness, biomass, functional diversity, and soil properties affect soil fungal diversity in sandy grassland restoration. Soil fungal richness in mobile dune and semifixed dune was markedly lower than those of fixed dune and grassland (< 0.05). Soil fungal richness was positively associated with plant richness, biomass, CWM plant height, and soil gradient aggregated from the principal component analysis, but SEM results showed that plant richness and CWM plant height determined by soil properties were the main factors exerting direct effects. Soil gradient increased fungal richness through indirect effect on vegetation rather than direct effect. The negative indirect effect of FDis on soil fungal richness was through its effect on plant biomass. Our final SEM model based on plant functional diversity explained nearly 70% variances of soil fungal richness. Strong association of soil fungal richness with the dominant species in the community supported the mass ratio hypothesis. Our results clearly highlight the role of plant functional diversity in enhancing associations of soil fungal diversity with community structure and soil properties in sandy grassland ecosystems.  相似文献   
55.
Mangroves play an important role in carbon sequestration, but soil organic carbon (SOC) stocks differ between marine and estuarine mangroves, suggesting differing processes and drivers of SOC accumulation. Here, we compared undegraded and degraded marine and estuarine mangroves in a regional approach across the Indonesian archipelago for their SOC stocks and evaluated possible drivers imposed by nutrient limitations along the land‐to‐sea gradients. SOC stocks in natural marine mangroves (271–572 Mg ha?1 m?1) were much higher than under estuarine mangroves (100–315 Mg ha?1 m?1) with a further decrease caused by degradation to 80–132 Mg ha?1 m?1. Soils differed in C/N ratio (marine: 29–64; estuarine: 9–28), δ15N (marine: ?0.6 to 0.7‰; estuarine: 2.5 to 7.2‰), and plant‐available P (marine: 2.3–6.3 mg kg?1; estuarine: 0.16–1.8 mg kg?1). We found N and P supply of sea‐oriented mangroves primarily met by dominating symbiotic N2 fixation from air and P import from sea, while mangroves on the landward gradient increasingly covered their demand in N and P from allochthonous sources and SOM recycling. Pioneer plants favored by degradation further increased nutrient recycling from soil resulting in smaller SOC stocks in the topsoil. These processes explained the differences in SOC stocks along the land‐to‐sea gradient in each mangrove type as well as the SOC stock differences observed between estuarine and marine mangrove ecosystems. This first large‐scale evaluation of drivers of SOC stocks under mangroves thus suggests a continuum in mangrove functioning across scales and ecotypes and additionally provides viable proxies for carbon stock estimations in PES or REDD schemes.  相似文献   
56.
57.
Aim Climate warming and increased wildfire activity are hypothesized to catalyse biogeographical shifts, reducing the resilience of fire‐prone forests world‐wide. Two key mechanisms underpinning hypotheses are: (1) reduced seed availability in large stand‐replacing burn patches, and (2) reduced seedling establishment/survival after post‐fire drought. We tested for regional evidence consistent with these mechanisms in an extensive fire‐prone forest biome by assessing post‐fire tree seedling establishment, a key indicator of forest resilience. Location Subalpine forests, US Rocky Mountains. Methods We analysed post‐fire tree seedling establishment from 184 field plots where stand‐replacing forest fires were followed by varying post‐fire climate conditions. Generalized linear mixed models tested how establishment rates varied with post‐fire drought severity and distance to seed source (among other relevant factors) for tree species with contrasting post‐fire regeneration adaptations. Results Total post‐fire tree seedling establishment (all species combined) declined sharply with greater post‐fire drought severity and with greater distance to seed sources (i.e. the interior of burn patches). Effects varied among key species groups. For conifers that dominate present‐day subalpine forests (Picea engelmannii, Abies lasiocarpa), post‐fire seedling establishment declined sharply with both factors. One exception was serotinous Pinus contorta, which did not vary with either factor. For montane species expected to move upslope under future climate change (Larix occidentalis, Pseudotsuga menziesii, Populus tremuloides) and upper treeline species (Pinus albicaulis), establishment was unrelated to either factor. Greater post‐fire tree seedling establishment on cooler/wetter aspects suggested local topographic refugia during post‐fire droughts. Main conclusions If future drought and wildfire patterns manifest as expected, post‐fire tree seedling establishment of species that currently characterize subalpine forests could be substantially reduced. Compensatory increases from lower montane and upper treeline species may partially offset these reductions, but our data suggest important near‐ to mid‐term shifts in the composition and structure of high‐elevation forests under continued climate warming and increased wildfire activity.  相似文献   
58.
59.
We contrasted traditionally used indicators of service provision quality, such as overall species richness and growth form composition, to three more specific functional properties: functional diversity, functional intensity, and functional stability. We defined flower colour as a functional trait perceived differently by humans and insect pollinators, and used user specific colour richness, flower size, and species richness within colour group as indicators of these three properties. We asked (1) do field margins and road verges provide flower-based ecosystem services with the quality of permanent grasslands; and (2) do traditional and detailed functional indicators of service provision quality agree on the service quality ranking of habitats?In an agricultural landscape of central and south-eastern Estonia (115 ÿ 95 km area, centroid 26°49⿲43⿳ and 58°54⿲49⿳) we sampled 87 field margins and 111 road verges as linear grassland-substitution habitats, and 84 permanent grasslands to scale their service quality.Linear habitats generally provided service of lower quality than permanent grasslands, but detailed indicators showed less evident contrast among habitat types than the overall species richness and stronger contrast than the proportion of forbs. Detailed indices, however, had strong seasonal dynamics to take into account. Vegetation in the first year field margins had greater colour richness (functional diversity) and species richness within colour groups (functional stability), but the smallest flower size (functional intensity), in contrast to road verges. By the third year of succession, field margins had become more similar to road verges. Indication of service provision quality differed between humans and pollinators, but their estimates were correlated across habitats.We showed that (1) combinations of specific service quality indicators provide more adequate information than generalized richness or growth form system, and (2) single grassland surrogate habitat type is an insufficient service providing substitute for permanent grasslands, although a mosaic of these habitats might be more efficient. Therefore, remnant fragments of semi-natural grasslands should receive top priority attention for conservation and restoration, particularly in agriculture dominated landscapes.  相似文献   
60.
全先奎  王传宽 《生态学报》2016,36(11):3381-3390
兴安落叶松(Larix gmelinii)作为北方森林的主要组成树种,具有广阔的分布范围和多样的生长环境,是研究树木对环境变化响应的理想树种。叶碳利用效率(CUE_L)不仅与树木的碳代谢及生长发育密切相关,而且能反映树木对环境变化的响应与适应。将来自不同地区(即环境条件)的6个兴安落叶松种源的种子播种培育在帽儿山森林生态系统研究站内,在其生长30a后采用研究站和种子来源地间干燥度(AI)的差值(ΔAI)来代表环境变化梯度,研究环境变化对CUE_L的影响。结果表明:CUE_L在不同环境变化梯度间存在显著差异(P0.05),且呈现随ΔAI的增大而减小的趋势。CUE_L与叶片氮含量、叶片磷含量、比叶重及叶绿素含量等均呈线性正相关关系,但较大ΔAI梯度下的CUE_L敏感性更高。CUE_L与种子来源地平均年降水量呈显著线性正相关关系(P=0.05),而与种子来源地AI则呈显著线性负相关关系(P0.01);随种子来源地年平均气温、平均年蒸发量的增加而下降,但其相关性不显著。以上结果表明,环境变化使兴安落叶松CUE_L产生了适应性变异,表现出树木对原生长环境的生态适应。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号